## 1-(4-methyl-3-nitrophenyl)-3-[(4-methylphenyl)methyl]thiourea: A Potential Drug Candidate
This long chemical name describes a specific organic compound, a thiourea derivative. While its precise function and importance might depend on the specific research context, here's what we can infer:
**Structure and Properties:**
* **Thiourea derivative:** It belongs to a class of compounds containing a thiourea group (-NH-CS-NH-) which is known for its ability to form hydrogen bonds and interact with biological systems.
* **Aromatic rings:** The presence of two aromatic rings (4-methylphenyl) suggests potential for drug-like properties, including lipophilicity and potential interactions with biological targets.
* **Nitro group:** The nitro group (NO2) is often associated with increased biological activity and can influence the compound's chemical reactivity.
**Potential Applications:**
Based on its structure, this compound could be explored for various research purposes, including:
* **Drug Discovery:** Thiourea derivatives are known for their potential pharmacological activities, ranging from antimicrobial and anticancer to anti-inflammatory effects. This compound could be a potential drug candidate for a specific disease or condition.
* **Biological Research:** It could be used as a tool to study biological processes or as a probe to investigate the activity of enzymes or proteins.
* **Materials Science:** Thiourea derivatives can exhibit interesting properties, such as photoconductivity and luminescence, which may be relevant for developing new materials.
**Importance in Research:**
The exact importance of this specific compound relies on the context of the research. However, the following factors make it potentially interesting:
* **Novel structure:** It combines specific functionalities (thiourea, aromatic rings, nitro group) that could result in unique biological activities.
* **Potential for medicinal chemistry:** Its chemical structure suggests potential as a lead compound for drug discovery.
* **Structural diversity:** The specific chemical structure could be modified further to optimize its properties and explore different areas of research.
**In conclusion,** 1-(4-methyl-3-nitrophenyl)-3-[(4-methylphenyl)methyl]thiourea is a potentially valuable compound for research in various fields. Its importance depends on the specific research question and application.
**To understand its importance fully, more information is needed about the specific research area where this compound is being investigated.** For instance, knowing the specific biological target or the intended application would provide a better understanding of its relevance.
ID Source | ID |
---|---|
PubMed CID | 970622 |
CHEMBL ID | 1602768 |
CHEBI ID | 107170 |
Synonym |
---|
1-(4-methylbenzyl)-3-(4-methyl-3-nitrophenyl)thiourea |
STK456071 |
n-(4-methylbenzyl)-n'-(4-methyl-3-nitrophenyl)thiourea |
MLS000581284 |
smr000199898 |
CHEBI:107170 |
1-(4-methyl-3-nitrophenyl)-3-[(4-methylphenyl)methyl]thiourea |
AKOS003310168 |
HMS2533D24 |
CHEMBL1602768 |
Q27185225 |
Class | Description |
---|---|
thioureas | Compounds of general formula RR'NC(=S)NR''R'''. |
[compound class information is derived from Chemical Entities of Biological Interest (ChEBI), Hastings J, Owen G, Dekker A, Ennis M, Kale N, Muthukrishnan V, Turner S, Swainston N, Mendes P, Steinbeck C. (2016). ChEBI in 2016: Improved services and an expanding collection of metabolites. Nucleic Acids Res] |
Protein | Taxonomy | Measurement | Average (µ) | Min (ref.) | Avg (ref.) | Max (ref.) | Bioassay(s) |
---|---|---|---|---|---|---|---|
TDP1 protein | Homo sapiens (human) | Potency | 18.8452 | 0.0008 | 11.3822 | 44.6684 | AID686978; AID686979 |
PINK1 | Homo sapiens (human) | Potency | 44.6684 | 2.8184 | 18.8959 | 44.6684 | AID624263 |
Parkin | Homo sapiens (human) | Potency | 44.6684 | 0.8199 | 14.8306 | 44.6684 | AID624263 |
polyunsaturated fatty acid lipoxygenase ALOX12 | Homo sapiens (human) | Potency | 0.7943 | 1.0000 | 12.2326 | 31.6228 | AID1452 |
vitamin D3 receptor isoform VDRA | Homo sapiens (human) | Potency | 89.1251 | 0.3548 | 28.0659 | 89.1251 | AID504847 |
nuclear receptor ROR-gamma isoform 1 | Mus musculus (house mouse) | Potency | 4.9288 | 0.0079 | 8.2332 | 1,122.0200 | AID2546; AID2551 |
geminin | Homo sapiens (human) | Potency | 4.1095 | 0.0046 | 11.3741 | 33.4983 | AID624296 |
Guanine nucleotide-binding protein G | Homo sapiens (human) | Potency | 5.6234 | 1.9953 | 25.5327 | 50.1187 | AID624287 |
[prepared from compound, protein, and bioassay information from National Library of Medicine (NLM), extracted Dec-2023] |
Process | via Protein(s) | Taxonomy |
---|---|---|
negative regulation of inflammatory response to antigenic stimulus | Guanine nucleotide-binding protein G | Homo sapiens (human) |
renal water homeostasis | Guanine nucleotide-binding protein G | Homo sapiens (human) |
G protein-coupled receptor signaling pathway | Guanine nucleotide-binding protein G | Homo sapiens (human) |
regulation of insulin secretion | Guanine nucleotide-binding protein G | Homo sapiens (human) |
cellular response to glucagon stimulus | Guanine nucleotide-binding protein G | Homo sapiens (human) |
[Information is prepared from geneontology information from the June-17-2024 release] |
Process | via Protein(s) | Taxonomy |
---|---|---|
G protein activity | Guanine nucleotide-binding protein G | Homo sapiens (human) |
adenylate cyclase activator activity | Guanine nucleotide-binding protein G | Homo sapiens (human) |
[Information is prepared from geneontology information from the June-17-2024 release] |
Process | via Protein(s) | Taxonomy |
---|---|---|
plasma membrane | Guanine nucleotide-binding protein G | Homo sapiens (human) |
[Information is prepared from geneontology information from the June-17-2024 release] |
Assay ID | Title | Year | Journal | Article |
---|---|---|---|---|
AID588497 | High-throughput multiplex microsphere screening for inhibitors of toxin protease, specifically Botulinum neurotoxin light chain F protease, MLPCN compound set | 2010 | Current protocols in cytometry, Oct, Volume: Chapter 13 | Microsphere-based flow cytometry protease assays for use in protease activity detection and high-throughput screening. |
AID588497 | High-throughput multiplex microsphere screening for inhibitors of toxin protease, specifically Botulinum neurotoxin light chain F protease, MLPCN compound set | 2006 | Cytometry. Part A : the journal of the International Society for Analytical Cytology, May, Volume: 69, Issue:5 | Microsphere-based protease assays and screening application for lethal factor and factor Xa. |
AID588497 | High-throughput multiplex microsphere screening for inhibitors of toxin protease, specifically Botulinum neurotoxin light chain F protease, MLPCN compound set | 2010 | Assay and drug development technologies, Feb, Volume: 8, Issue:1 | High-throughput multiplex flow cytometry screening for botulinum neurotoxin type a light chain protease inhibitors. |
AID504810 | Antagonists of the Thyroid Stimulating Hormone Receptor: HTS campaign | 2010 | Endocrinology, Jul, Volume: 151, Issue:7 | A small molecule inverse agonist for the human thyroid-stimulating hormone receptor. |
AID588499 | High-throughput multiplex microsphere screening for inhibitors of toxin protease, specifically Botulinum neurotoxin light chain A protease, MLPCN compound set | 2010 | Current protocols in cytometry, Oct, Volume: Chapter 13 | Microsphere-based flow cytometry protease assays for use in protease activity detection and high-throughput screening. |
AID588499 | High-throughput multiplex microsphere screening for inhibitors of toxin protease, specifically Botulinum neurotoxin light chain A protease, MLPCN compound set | 2006 | Cytometry. Part A : the journal of the International Society for Analytical Cytology, May, Volume: 69, Issue:5 | Microsphere-based protease assays and screening application for lethal factor and factor Xa. |
AID588499 | High-throughput multiplex microsphere screening for inhibitors of toxin protease, specifically Botulinum neurotoxin light chain A protease, MLPCN compound set | 2010 | Assay and drug development technologies, Feb, Volume: 8, Issue:1 | High-throughput multiplex flow cytometry screening for botulinum neurotoxin type a light chain protease inhibitors. |
AID588501 | High-throughput multiplex microsphere screening for inhibitors of toxin protease, specifically Lethal Factor Protease, MLPCN compound set | 2010 | Current protocols in cytometry, Oct, Volume: Chapter 13 | Microsphere-based flow cytometry protease assays for use in protease activity detection and high-throughput screening. |
AID588501 | High-throughput multiplex microsphere screening for inhibitors of toxin protease, specifically Lethal Factor Protease, MLPCN compound set | 2006 | Cytometry. Part A : the journal of the International Society for Analytical Cytology, May, Volume: 69, Issue:5 | Microsphere-based protease assays and screening application for lethal factor and factor Xa. |
AID588501 | High-throughput multiplex microsphere screening for inhibitors of toxin protease, specifically Lethal Factor Protease, MLPCN compound set | 2010 | Assay and drug development technologies, Feb, Volume: 8, Issue:1 | High-throughput multiplex flow cytometry screening for botulinum neurotoxin type a light chain protease inhibitors. |
AID651635 | Viability Counterscreen for Primary qHTS for Inhibitors of ATXN expression | |||
AID1745845 | Primary qHTS for Inhibitors of ATXN expression | |||
AID504812 | Inverse Agonists of the Thyroid Stimulating Hormone Receptor: HTS campaign | 2010 | Endocrinology, Jul, Volume: 151, Issue:7 | A small molecule inverse agonist for the human thyroid-stimulating hormone receptor. |
[information is prepared from bioassay data collected from National Library of Medicine (NLM), extracted Dec-2023] |
Timeframe | Studies, This Drug (%) | All Drugs % |
---|---|---|
pre-1990 | 0 (0.00) | 18.7374 |
1990's | 0 (0.00) | 18.2507 |
2000's | 1 (20.00) | 29.6817 |
2010's | 3 (60.00) | 24.3611 |
2020's | 1 (20.00) | 2.80 |
[information is prepared from research data collected from National Library of Medicine (NLM), extracted Dec-2023] |
According to the monthly volume, diversity, and competition of internet searches for this compound, as well the volume and growth of publications, there is estimated to be weak demand-to-supply ratio for research on this compound.
| This Compound (12.56) All Compounds (24.57) |
Publication Type | This drug (%) | All Drugs (%) |
---|---|---|
Trials | 0 (0.00%) | 5.53% |
Reviews | 0 (0.00%) | 6.00% |
Case Studies | 0 (0.00%) | 4.05% |
Observational | 0 (0.00%) | 0.25% |
Other | 5 (100.00%) | 84.16% |
[information is prepared from research data collected from National Library of Medicine (NLM), extracted Dec-2023] |